\qquad
\qquad Pd. \qquad

Activity 1

New Terms:
\qquad
\qquad Pd. \qquad

Activity 2

New Terms:
\qquad
\qquad Pd. \qquad

Activity 3

Fig 1. Clip - top view

There are two clips and two plates for each socket. One clip and plate goes under the other clip and plate. The clip is where the wire connects to. The plate is what the bulb screws into. You need to label one clip and plate as "A" and the other clip and plate as " B ".

Filament

Threaded Section

Fig 3. Diagram of a bulb

What parts of a socket and

Conclusion:

Consensus:

\qquad
\qquad Pd. \qquad

Worksheet 1

1. In the following circuit, which bulb lights first?
A) Bulb A
B) Bulb B
C) Bulb C
D) They all light at the same time
E) A and C light first, B lights after them.

Study the three loops shown below. For each loop, state which bulbs will light when the connections are made.

2. \qquad
A) bulb A
B) bulb B
C) both bulbs
D) neither bulb

3. \qquad
A) bulb A
B) bulb B
C) both bulbs
D) neither bulb

4. \qquad
A) bulb A
B) bulb B
C) both bulbs
D) neither bulb
5. Using a colored pencil, go back and trace the continuous conducting paths in numbers $1-4$.

Date: \qquad
\qquad Pd. \qquad

The two concept maps below are a visual representation of how major ideas fit together. Fill the blanks with appropriate words, or phrases. 6 - Continuous Conducting Path Concept Map.

7. Open Loop Concept Map.

8. Draw the continuous Conducting path through this bulb and socket.

Start in this connecting wire

\qquad
\qquad Pd. \qquad

Worksheet 2

Continuous Conducting Paths and the Internal Path Through a Bulb.

1. Examine the picture below. You have a battery pack and three cells arranged like so. You are given two wires to make all three bulbs light.
a) draw the wires
b) in another color, trace the Continuous Conducting Path (ССР) through the circuit - this includes through the filaments of the bulbs and the batteries!

2. Homer and Hilda found a way to light two bulbs with a 3-cell battery and only 2 wires! Trace the CCP throughout the entire circuit.

Electricity - Section 1
Date: \qquad
Payton Physics
Name: \qquad Pd. \qquad

Here are some more attempts from Homer and Hilda. Your job is to trace the CCP and determine which of the bulbs will light. Note: the bulbs are always touching each other.

7. bulb 1:	Lit	Unlit
bulb 2:	Lit	Unlit

\qquad
\qquad Pd. \qquad

Activity 4

Predictions

Predict the relative strength of electrical activity in each wire. (e.g. $A=B, B<C$)

Predict the direction and amount of compass deflection for each wire in the diagram above.

amount of
 is happening in the wires?

What would be the effect of reversing the battery pack on the compass deflection?

Describe the direction and amount of compass deflection for each wire when the battery pack is reversed.
Conclusion:

Consensus:

New Terms:
\qquad
\qquad Pd. \qquad

Reading

What is moving in the wires and in what direction is it going?

What's moving?

No one can see what moves through the wires, but something about the moving substance causes a compass needle to deflect. The property that enables the substance to do this is called CHARGE, from a Latin word that means "vehicle". Particles that carry charge from one place to another are called "charge carriers". The experiments you've done provide evidence that CHARGE is carried through wires, but they provide no evidence yet about the nature of the charge carriers.

Which direction is it moving?

The reversal of compass needle deflection when the battery orientation is reversed indicates a change in the direction of charge flow in the loop, but provides no information about which actual direction exists before or after the change. Scientists searched for hundred of years trying to determine which way the charge really moved, but were unable to do so until the late 1800's. In the absence of any evidence, they decided to assume a direction for the motion. Such an assumption is "conventional" - that is, simply an "agreement" which isn't necessarily right or wrong but is useful because it is necessary for communication. The international convention is that the charges circulating around a circuit leave the battery at the "positive" end (red spot), travel around the circuit and re-enter at the "negative" end (blue spot), and pass through the battery. In later Sections we will collect evidence to determine whether this "conventional" direction is accurate or not.

